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ABSTRACTJ

In this paper the properties of the generalized Euler-Frobenius

polynomial -4-....o  are studied. It is proved that its ze;p are separated

by a factor q and their asymptotic behavior as is obtained. As a

consequence it is shown that least squares spline approximation on a

biinfinite geometric mesh is boundable independently of the (local) mesh

ratio q and that the norm of the inverse of the corresponding B-spline Gram

matrix decreases monotonly to 2k - I for large q, as
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SIGNIFICANCE AND EXPLANATION

The Euler-Frobenius polynomial HI plays an important role in then
analysis of cardinal polynomial splines. It has simple, negative zeroes, and

the fact

112k-1-) * 0

allows us to conclude that there exists a unique bounded cardinal polynomial

spline f e S2k that interpolates prescribed data b e X at integers.

The essential properties of cardinal polynomial splines have been later

extended to the more general case of cardinal £-splines, and thereby, by an

appropriate change of variables, to polynomial splines on the biinfinite

geometric mesh

(q ) , 1 q q <

The generalized Euler-Frobenius polynomial is in the latter case given by

11n(A;q) :=- n(- ni (qJ - X), t := Inq

ntn i=I j=0

.9

In the report some new characteristics of HT (o;q) are outlined. An

simple but far reaching property is proved: the zeroes are separated by a

factor q. This fact helps us to analyse spline interpolation on the

biinfinite geometric mesh. In particular, it is proved that the least squares

spline approximation is boundable independently of the local mesh ratio q,

and that the norm of the inverse of the corresponding B-spline Gram matrix

decreases monotonly to 2k - 1 for large q, as q e ei* " o s For

*'. -, r- _s _ _ _

anp~~d/or

'S ~jecial

The responsibility for the wording and views expressed in this-deseriptiv
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ON THE GENERALIZED RULER-FROBENIUS POLYNOMIAL

Y. Y. rang and 3. Kozak*

1. Introduct.on

The exponential Ruler polynomial A%(x;t) played an important role in the analysis of

cardinal polynomial splines. This in much due to the fact that the spline defined by the

functional relation

f nx) :- A n(xt), x e [0,1[

n (x + 1) 1- Aon(x) otherwise

vanishes at all integers for particular values of X, the zeroes of the Euler-Frobenius

polynomial 1n (A) W A - )nAn(O;). A nice survey of cardinal polynomial splines can be

found in (7]. Micchelli [6] showed that the essential properties of cardinal polynomial

splines can be extended to the more general case of cardinal C-splines. By applying his

results to the particular differential operator,

nd
L(D) - I (D - it), D :- d t e R
t i-O

and to the corresponding generalized exponential Euler polynomial

n ix

A X)~)I()n-i (n t

n nt tn i.0 q -A

he analyzed spline interpolation at knots or the biinfinite geometric mesh

(qi 12

In this case, the generalized Ruler-Frobenius polynomial is given by

Sponsored by the United States Army under Contract Nos. DAAG29-75-C-0024 and
DAAG29-90-C-0041.

+Supported by Fulbright Grant No. 79-045-A.



nn n -in n

in (X;q) T I (qi _ n) (O;A,q) - 1____ X "ni(n) *jI (qi - )) , (1.3)
i=O nit i.O J-0

i*i

and satisfies a "difference-delay" equation [6]

1 0(X~q) :- 1 , (1.4)

n (Xtq) = I (M - )qn7n (q-1 );q) - (q+ (A;q)), n = 0,1,...n+1 (  (n + 1)t (( )n . )n

A recent paper by Hollig (5] shows that more general spline interpolation problems on

a blinfinite geometric mesh can be understood in terms of properties of aI (X;q).n

The main part of the present paper is an outline of same new characteristics of

nn (Xnq). A simple but far reaching property is the: zeroes pnj(q) are separated by a

factor q. This produces the bounds

-constI qn-i j Vni(q) 4 -const2 qn-i

for some property chosen const1, const2.

In Section 3, the properties developed are used in an analysis of spline

Thterpolation Pf to f defined by the conditions

f M, Pf - f Mif, all i
I I

on a biinfinito geometric mesh. in this way, some of the results in (5] are obtained by a

different approach.

-2-



2. The Zeroes of H (Xq)

We start the section with the symmetries of the generalized Euler-Probenius

polynomial. In addition to the description (1.3), we shall use

n- I n0q))aIa -) = n
(Oq), Yn :'

10i=O~ ) Yn(q 1) 1
n  

nlie

to emphasize its polynomial character in A.

Theorem 2.1. The polynomial Rt (Xq) satisfies
n

.n-I -n(n-1)/2_ n.-1
in (X;q) - X q Tn n (q n X (2.1)

The coefficients an,(q) can be recurrently computed by

Sn+l,i(q } = (q ( ) 1
1(qn+l - qn-i)a,i(q) + (qn+'-i . I)an1i(q)) , (2.2)

where

an,O(q) : I, an,l (q) = a,n(q) = 0

Proof. For n = 1 or X - 0, (2.1) obviously holds. Assume A 0, n ) 2. Then

n n

i -0 15J0

i*i

Y n (.)n'i(ni)q i' I (qJ - A)n- J-0

J01

since the n-th order finite difference of a constant vanishes. But

qi 
1  

I (qj A) (-)nn1lqn(n-l)/2 T -T (q' qnAl)
J-0 J-0

J*i J*n-i

which completes the proof of (2.1).

-3-



In terms of the an,i(q), the recurrence relation (1.4) reads

n n-1 n-1
a n+l,(q)X1 = -(q-)l((1.lqn an, (q)q-ixi - (qn+I.X) I a n,i(q)X) 1

1 0 t-1-0
In n+ n-i n+l-i -a

(q-l)
"1  

0 ((q - ni)a(q) + (q -I)&ani1 (q))i

if we define an,(q) = a,n(q) :- 0, and this confirms (2.2). U

Corollary 2.1. The coefficients a n,(q) satisfy

%ji(q) . qn(n-21l1)/2a, n-llq) , (2.3)

and for n ; 2

an'il(q)  q q(n-tl(n-l-i)/2 a n-(- ) (j(2.4
- q O an tq . (2.4)

i-a

The integer coefficients a(J) are symetric

a(J) -(iln-l-i l-j) (25
a , all (2.5)n,i an'i

In particular,

,(0) .n-1'l
ni

(2.6)a(1) (n 2)I(n-1  (n-2 n 2.,i " " +,,1) (1Ci2)
It is easy to prove (2.3)-(2.6) by using (2.2) and mathematical induction. We shall

omit this step.

From now on we think of the zeroes of 11 n(.q) an functions of q. It is proved in

[61 that the n - I zeroes Pn (q), i - 1,...,n - 1, of Rn (.q) are all simple andn,i n
real, in fact negative. They satisfy

d

n,i(q) < 0. d un, 1 (q) < 0 , (2.7)

im Pn, (q) 0, lim U n,i (q) = -, ll I , (2.8)

n+O i q~m nt

and

': I. -4 -

......
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un (q
1
) P (q), all i (2.9)

We shall think of the n.i (q) as ordered.

1n, (q) < n,2(q) < ... nn 1 (q) < 0 * (2.10)

Then, additionally, by [4] and (2.15)

d n~ -1 q) )3 C d( [ j 1 (q) >0(.1
dq q q n-1 J

The symmetry (2.9) tells us that we can restrict our discussion to the case q ) 1.

Lorn 2.1. Let q )o 1. Then

Ln,iem(q) < 2.+1.i(q) < qni (q), - 2,3,...,n - 1i n - 2,3.... . (2.12)

Proof. Suppose n,i-(q) ( qln1i(q) holds for some n. By hypothesis then

sirn(n (a1;q)) * sin(H (Xlq)) < 0, X • [e (n,i), ] (1

and from (1.4)

1n (Xlq) 0, A e [qjn (a),n (q)] (2.13)

But Un (q) is a zero of R (.;q), thus another look at (1.4) tells us
n'i n

siqnt nt (qni (q),q)) , *ignOTl01 l(q);q)) < 0

and there is at leat one zero of n (*;q) in each of the intervalst+1

Y] nJi-(q).qjn,i(q)[ , all i (2.14)

Also by (1.4)

sign(nn (0+;q)) , sign(Hn (P (q);q)) < 0
n+1 n+1 n,n-1

$ sigI(Jin+l(Uni (q);q)) • sign(nI (-;q)) < 0

and this reveals the position of the smallest and the largest zero of R n+l(;q). However,

i n+(,;q) is a polynomial of degree < n + 1, and in each of the intervals (2.14) there

is exactly one zero, p n+h1 (q).

Now (2.15) brings the induction hypothesis to the next level and (2.12) is proved

since it obviously holds for n - 2. U

It is easy to deduce the following interesting properties of pni (q).

"--



Corollary 2.2. The zeroes M ni(q) of An (OYq) have the following properties

n
n'i (q) * P ntn-i(q) q all i (2.15)

In particular

P2kk(q) - -q (2.16)

and for i 4 1 n

Sn'i(q) < -q n-i, un,ni(q) > -q 1 (2.17)

as well as

d C(rt i~
)

dq n-- > 0, all 1 (2.18)

Proof. By (2.1)

n (A:q) 0 iff In (qn/Xsq) - 0
n@

Since we have ordered un i(q) as in (2.10), (2.15) follows. (2.16) is a special case of

(2.15). From (2.15) and (2.12) we find

q , ni(q)M nn(q) >q n n P2 (q)
n'i fl'n-i n ,n-i

which implies (2.17). Finally, combining (2.15) and (2.7) we obtain (2.18). U

Theorem 2.2. Let q ) 1. Then for i-1,2,..., [n 1
n-ii

-cq n-i Un,i(9 )  C2q (2.19)-Il ni•-~

i I

I q i€ ,n-(q) 4 . q , (2.20)
c 2  I

the constants C,, c2  do not depend on q and t, and

c, - n, , (2.21)

L I n odd

I < C2  + 2 (2.22)

W - n even

Proof. It is enough to prove (2.19), since (2.20) follows from it by (2.15). Observe from

(2.11) that 1nI(q) v n, 1 (l)q n l
. Then by Lems 2.1

(2.11) -6-



V (q) ti, I (q) U )qn-i - q ,
nj 1 ,I

and the left inequality is proved.

Since p n,i()/qn -i  is a continuous function on [1,-[ and satisfies (2.17), while

by Theorem 2.4

l q Un-i n
qr n-

there obviously exists a constant I < c2 ( min n independent q such that the right

inequality of (2.19) holds. In particular note that I < c2  k - I for n - 2k - 1. U

Theorem 2.2 bounds Mn,i(q) as functions of q. However, it is of interest also to

ask the opposite question: suppose "n,i(q) - Un'i.1(q). What can we say about q, q? We

believe its answer is beautiful enough to deserve its place in the paper.

Theorem 2.3. There exists a constant, const < I so that, for any q, q or i,

Un'i(q) - Un,i.1 (q) ( 2.23)

implies

q 4( const < 1
q

Proof. Let q, q satisfy (2.23) for some i, Then (2.18) gives us

(n <,n, ()n _ n,,(q)n < , a a solution of ; - (q) Pi (q)

q q q n,i-1

The function p (q) is a continuous function of q, and by Lemma 2.1 and (2.9)
i

(1qJq• P ( iq) < ,

-"'n'i+IlI/q) <
q ( I piq) - n,n-i (1/q)

Thus Pi(0+) P (i) - 0. Clearly we find



const - max max p (q) < 1

± q

The last part of this section we devote to the asymptotic behavior of n'i (q) as

q + -o

Theorem 2.4. For i = 1,2,..., fn-- ],

P (q) - - n - i n-i . n-i-1 + O(q ) , (2.24)

t' t n 2 t-

Pn,n-i(q) =- n j qi + (n 2i cniq + O(q 1 -2  (2.25)

Here

i 2 c I - [n - 21)
4 

+ (16 - 1)(n - 2)
3

n ni : 12 (1 + 1n - n i + 1

+ 413 1)(n 21)
2 

+ 4i2 (2i - 1)(n - 21)] . (2.26)

In particular,

c (2k- 1)2 (2.27)
2k-l'k'l k(k - 1)

2
(k + 1)

Proof. By (2.15) it is enough to prove (2.24). Let X P n,i (q). By (2.8) and (2.15)un i

lim P 0, all i
n

q
4
* q

Thus for some a * 0 and some r ) 0

A - ,qn-r + 0,n-r-1 + o(qn-r-
2 ) • (2.28)

Since the coefficients an,t(q) are polynomials in q, and after a proper normalization

in 1/q, r is an integer. From Corollary 2.1 we conclude that as q + -

a (q)A n1 q(n+i)(n-l-i)/
2 +(n-r)t( (0) i -1 (1) i +(0) i-1

1,,0 i-OJ0nAni '

An inspection of the exponent

m--



(i,r} := (n + 11(n - - i)/2 (n - r)i

shows

(2n- r) - 1 + ( *~2(n -r) -I . r

A j(i,r) : 4(i + 1,r) -'O(i,r] = n - r - ± - 1

Since A(n - r - 1,r) = 0, the leading power of a occurs in the terms i = n - r - 1,

n - r. Thus (2.29) can vanish precisely for r - 1,2,...,n - 1 as q * -, and we

conclude from (2.10): ni (q) o(q n). By using (2.6) it is now straightforward to

complete the proof. U

iU6=

f

!-9
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3. Polynomial Splines on a Biinfinite Geometric Mesh

To start more generally, let t := (t +" be a strictly increasing biinfinite

sequence with t : l 1im ti , I := ]t .,t, [. Let further

mSn,t.(1) := f c n-2(I) n L.,(I)If tit i+1 is a polynomial of degree < n}

be the normed linear space of polynomial splines of order n with the breakpoint

sequence t and the norm fl :- sup If(x)I. Let r,k e N be given integers,
xel

0 4 r < 2k, 0 < k. Consider the map

SmS ,(I) * I : f t-+ ( i,rf), (3.1)

associated with interpolation conditions

i, f :- f(ti), i,r : f Mi,rE, r > 0
r

Here, as usual the B-splines of order k with knots t are defined by

M ik X W k~ti t i+ .... t i M]( " X) k-1

ik i i+1'"' i+k +

N ( t )M

The interpolation problem: for given b :- (bi) e ,, find f ' S2k .,(I) such that

Rrf = b

is by [21 correct, if Rr is invertible, i.e. the Gramian (totally positive) matrix

r i=( ,r j,2k-r ,j.. o

is boundedly invertible.

Let us restrict ourselves now to a particular geometric knot sequence t :- (q __

for some q f 10,-J. In this case the matrix is a Toeplitz matrix and is boundedly

invertible iff the characteristic polynomial

OLi,r N ,2kr (3.2)~j

has no zero on the unit circle Il - 1. or since Gr is totally positive, at A = -1.

The case r = 0 is treated in (61, where it is proved that

.- 10-
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ll2 k-(X;q) 1 2 N A X N
2k-1 2k-1k J,2k i,0 j,2k~~J-0

and from properties of the generalized Euler-Frobenius polynomial determined when R. is

invertible. A nice argument shown to us by de Boor [3) leads to the conclusion:

The characteristic polynomial (3.2) has -1 as a zero iff

E2k- 1 ( -qk - r q) = 0

for any r, 0 < r 4 2k - 1. A recent result of Hollig [5) states

IG-11 - h(q 2k(qrq)r k- 1  l(qr ;q)

He proves that hr(q) is bounded independently of q and Gr r * k - 1,k is not

boundedly invertible for at least one q e [1,-[. We give here an alternative proof by

simply rereading Theorem 2.2. By Theorem 2.1 we can restrict to the case 0 r -C k - 1.

The equation

:n iq) i,k,r (q) :- v 2k-l,i (q/, r = 1(3.5)

has (at least one) solution q e ]0,-[ exactly for r + 1 4 i 4 2k - 2 - r. Put

Or := {qlg is a solution of (3.5))

and IQ r : number of elements in Or Choose r + I i k - 1. Then

2k-i -r-i 2k-I -r-i-c q < ria) C - c2 q , ) 1

(3.6)

- 1 q-r+i -1(q) -c1 Iq -r+i-2  • h g) • -1  a , • 1 .

If q ) 1 obviously there is no solution to (3.5) since this would imply i 2k - r. In

the case q 1 there is q e Qr exactly for i * r + 1. Since

S-1 iff n2 1 (l/q) = -I

our claim is confirmed.

We note that the case of a finite-partition [I suggests that Rr, r k k - 1,k is not

invertible for all q, but as already pointed out in [2] the same proof can not he applied

since the quotients

PW M M L -11-
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J+r i

i+1-r<JCi q - q

are bounded independently of q.

Let now q P 1. From (2.15) we get

2k-2 q k - klri(q)j k-1 wi(q) + 1
- h (q) k (3.7)

q + 02k- 1,1 
(q ) -1 i

with

v1 (q) :- -(P 2k.l,i(q) + P2k-1,2k.1.t(ql)/(k + q k-) (3.8)

From Theorem 2.2 we conclude

-k k-i-i + -1 -k+1+i
;i:(q) -2k. 1,i(q)/q 0 wi (q) ) (c2q + c2 q )/2 :w(q)

and

k-1 w,(q) + 1 k-1 w(o) + 1,-T _I I <- -- .-
t=11 !!(q) - I =1-

ii-I v1(q) - 1

Since hk-1 (q) is decreasing as a function of q, this suggests that hk. I (q) is too.

However, we succeeded in proving this only as q s m a consequence of Theorem 2.4 and

(3.7), (3.8).

Theorem 3.5. For 0 4 r 4 2k - 1, the Gramian matrix Gr is not boundedly invertible for

q e r' and I~r Iclr' > 2(k - I - r), 0 4 r 4 k - 1. In particular,

Qk 'Qk-1 1  0 , and the norm hk(q) for q e 1,0[ satisfies

hq)C h (q) < 2(T ~ ~ 2k1 (3.9)

also as q *

h k(q) - (2k - 1)(1 + 4(k-2)/(k+l)q "1 
+ O(q

2 )) . (3.10)

-12-
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